Sáng kiến kinh nghiệm Ứng dụng định luật bảo toàn động lượng

Sáng kiến kinh nghiệm Ứng dụng định luật bảo toàn động lượng

I/ LÍ DO CHỌN ĐỀ TÀI

Động lượng là một khái niệm Vật lý trừu tượng đối với HS. Trong các bài toán Vật lý, động lượng chỉ một đại lượng trung gian để xác định vận tốc hoặc khối lượng của vật.

Việc kết hợp các ĐLBT để giải một bài toán Vật lý có ý nghĩa rất quan trọng trong việc phát triển tư duy của HS, phát huy được khả năng tư duy sáng tạo của HS.

II/ MỤC TIÊU CỦA ĐỀ TÀI

Giúp HS hiểu ý nghĩa của ĐLBT động lượng và biết vận dụng linh hoạt trong các bài toán cơ học ở lớp 10.

Rèn luyện kỹ năng vận dụng kiến thức toán học và sử dụng MTĐT vào việc giải bài toán Vật lý.

Giáo dục kỹ thuật tổng hợp: HS giải thích được các hiện tượng va chạm thường gặp trong đời sống.

III/ QUÁ TRÌNH THỰC HIỆN ĐỀ TÀI

Hệ thống bài tập có liên quan đến động lượng trong SGK và SBTVL lớp 10 khá đầy đủ, tuy nhiên HS thường gặp khó khăn do kiến thức toán học có nhiều hạn chế.

Để HS nắm được phương pháp giải bài toán động lượng, trước hết giáo viên cần kiểm tra và trang bị lại cho HS một số kiến thức toán học cơ bản, đặc biệt là công thức lượng giác.

 Định lí hàm số cosin, tính chất của tam giác vuông.

 Giá trị của các hàm số lượng giác với các góc đặc biệt.

 Kỹ năng sử dụng máy tính bỏ túi.

* Biện pháp thực hiện

 Trang bị cho HS các kiến thức toán học cần thiết: lượng giác, giá trị các hàm số lượng giác, định lí hàm số cosin.

 Hướng dẫn HS sử dụng thành thạo máy tính bỏ túi.

 Yêu cầu HS kẻ sẵn một số bảng giá trị các hàm số lượng giác để tìm được kết quả nhanh chóng.

 Giáo viên khai thác triệt để các bài toán trong SGK và SBT bằng cách giao bài tập về nhà cho HS tự nghiên cứu tìm phương pháp giải.

 Trong giờ bài tập, giáo viên hướng dẫn HS trình bày lời giải và nhiều HS có thể cùng tham gia giải một bài.

 

doc 7 trang Người đăng thuquynh91 Lượt xem 1129Lượt tải 5 Download
Bạn đang xem tài liệu "Sáng kiến kinh nghiệm Ứng dụng định luật bảo toàn động lượng", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
ỨNG DỤNG ĐỊNH LUẬT BẢO TOÀN
ĐỘNG LƯỢNG
A – MỞ ĐẦU
Môn Vật lý là môn khoa học nghiên cứu những sự vật, hiện tượng xảy ra hàng ngày, có tính ứng dụng thực tiễn cao, cần vận dụng những kiến thức toán học. HS phải có một thái độ học tập nghiêm túc, có tư duy sáng tạo về những vấn đề mới nảy sinh để tìm ra hướng giải quyết phù hợp.
Trong phần Cơ học lớp 10, Động lượng là một khái niệm khá trừu tượng đối với HS vì nó chỉ là một đại lượng trung gian để xác định vận tốc hoặc khối lượng của vật. Trong các bài toán liên quan đến động lượng HS thường gặp khó khăn trong việc biểu diễn các vectơ động lượng và rất hạn chế trong việc sử dụng toán học để tính toán.
Mặt khác, động lượng cũng là một đại lượng có tính tương đối nên phụ thuộc vào hệ quy chiếu, HS thường quên đặc điểm này nên hay nhầm lẫn khi giải bài toán.
Để khắc phục được những khó khăn trên, giáo viên cần đưa ra các yêu cầu cơ bản, ngắn gọn để HS nắm được phương pháp giải của bài toán động lượng.
I/ LÍ DO CHỌN ĐỀ TÀI
Động lượng là một khái niệm Vật lý trừu tượng đối với HS. Trong các bài toán Vật lý, động lượng chỉ một đại lượng trung gian để xác định vận tốc hoặc khối lượng của vật.
Việc kết hợp các ĐLBT để giải một bài toán Vật lý có ý nghĩa rất quan trọng trong việc phát triển tư duy của HS, phát huy được khả năng tư duy sáng tạo của HS.
II/ MỤC TIÊU CỦA ĐỀ TÀI
Giúp HS hiểu ý nghĩa của ĐLBT động lượng và biết vận dụng linh hoạt trong các bài toán cơ học ở lớp 10.
Rèn luyện kỹ năng vận dụng kiến thức toán học và sử dụng MTĐT vào việc giải bài toán Vật lý.
Giáo dục kỹ thuật tổng hợp: HS giải thích được các hiện tượng va chạm thường gặp trong đời sống.
III/ QUÁ TRÌNH THỰC HIỆN ĐỀ TÀI
Hệ thống bài tập có liên quan đến động lượng trong SGK và SBTVL lớp 10 khá đầy đủ, tuy nhiên HS thường gặp khó khăn do kiến thức toán học có nhiều hạn chế.
Để HS nắm được phương pháp giải bài toán động lượng, trước hết giáo viên cần kiểm tra và trang bị lại cho HS một số kiến thức toán học cơ bản, đặc biệt là công thức lượng giác.
Định lí hàm số cosin, tính chất của tam giác vuông.
Giá trị của các hàm số lượng giác với các góc đặc biệt.
Kỹ năng sử dụng máy tính bỏ túi.
* Biện pháp thực hiện
Trang bị cho HS các kiến thức toán học cần thiết: lượng giác, giá trị các hàm số lượng giác, định lí hàm số cosin.
Hướng dẫn HS sử dụng thành thạo máy tính bỏ túi.
Yêu cầu HS kẻ sẵn một số bảng giá trị các hàm số lượng giác để tìm được kết quả nhanh chóng.
Giáo viên khai thác triệt để các bài toán trong SGK và SBT bằng cách giao bài tập về nhà cho HS tự nghiên cứu tìm phương pháp giải.
Trong giờ bài tập, giáo viên hướng dẫn HS trình bày lời giải và nhiều HS có thể cùng tham gia giải một bài.
B – KIẾN THỨC CƠ BẢN
I/ Kiến thức toán học
Định lý hàm số cosin: a2 = b2 + c2 – 2bccosA
Giá trị của các hàm số lượng giác cơ bản ứng với các góc đặc biệt:
Hàm\Góc
300
450
600
900
1200
sin
1
cos
0
tan
1
||
II/ Kiến thức vật lý
Kiến thức động học
Chuyển động ném xiên
Kiến thức về động lượng
Động lượng của một vật: 
Động lượng của hệ vật: 
Kiến thức về ĐLBT Động lượng
Nội dung: SGK
Biểu thức áp dụng cho hệ 2 vật: 
C – BÀI TOÁN CƠ BẢN
Bài tập 1: 
Hai vật có khối lượng m1 = 1kg và m2 = 3kg chuyển động với vận tốc v1 = 3m/s và v2 = 1m/s. Tìm tổng động lượng (phương, chiều, độ lớn) của hệ trong các trường hợp sau:
 và cùng hướng.
 và cùng phương, ngược chiều.
 vuông góc 
 vuông góc 
Tóm tắt:
m1 = m2 = 1kg
v1 = 1m/s
v2 = 2m/s
a) 
b) 
c) 
Yêu cầu:
+ HS biểu diễn được các vectơ động học
+ Xác định được vectơ tổng trong mỗi trường hợp.
+ Biết áp dụng Định lí hàm số cosin.
Nhận xét:
+ HS thường gặp khó khăn khi xác định vectơ tổng động lượng của hệ các vectơ ,.
+ Không nhớ ĐLHS cosin, xác định góc tạo bởi 2 vectơ .
Lời giải:
Động lượng của hệ: 
Trong đó: p1 = m1v1 = 1.3 = 3 (kgms-1)
p2 = m2v2 = 3.1 = 3 (kgms-1)
a) Khi 
p = p1 + p2 = 6 (kgms-1)
b) Khi 
p = p2 – p1 = 0 (kgms-1)
c) vuông góc => 
(kgms-1)
d) Khi 
= 1200 = a
là tam giác đều, nên:
=> p = 3 (kgms-1)
Bài tập 2: Sau va chạm 2 vật chuyển động cùng phương.
Bắn một hòn bi thép với vận tốc v vào hòn bi thuỷ tinh đang nằm yên. Sau va chạm hai hòn bi cùng chuyển động về phía trước, nhưng viên bi bằng thuỷ tinh có vận tốc gấp ba lần viên bi thép. Tìm vận tốc của mỗi hòn bi sau va chạm. Biết khối lượng bi thép gấp ba lần khối lượng viên bi thuỷ tinh. 
Tóm tắt:
Bi thép: m1 = 3m v1 = v 
Bi thuỷ tinh: m2 = m v2 = 0 
v2’ , = ?
Yêu cầu:
+ Nêu được điều kiện hệ kín.
+ Nêu được kiến thức ĐLBT động lượng cho hệ 2 vật.
+ Chiếu biểu thức động lượng xác định vận tốc 
Lời giải:
+ Xét sự va chạm xảy ra trong thời gian ngắn.
+ Chọn chiều dương theo chiều chuyển động của bi thép ().
+ Áp dụng ĐLBT động lượng ta có:
(*)
 Chiếu PT (*) lên chiều dương ta có:
m1v1 = m1v1’ + m2v2’
3mv = 3mv1’ + 3m => 
Và 
Nhận xét: HS gặp khó khăn khi chuyển biểu thức động lượng dạng vectơ sang biểu thức đại số để tính toán.
Bài tập 3: Sau va chạm 2 vật chuyển động khác phương.
Một viên đạn khối lượng 2kg đang bay thẳng đứng lên cao với vận tốc 250m/s thì nổ thành 2 mảnh khối lượng bằng nhau. Mảnh thứ nhất bay lên với vận tốc 250m/s theo phương lệch góc 600 so với đường thẳng đứng. Hỏi mảnh kia bay theo phương nào và với vận tốc bằng bao nhiêu?
Tóm tắt:
m = 2kg v = 250m/s
m1 = m2 = 1kg v1 = 250m/s
O
α
A
B
β
Yêu cầu:
+ Vẽ hình biểu diễn các vectơ động lượng.
+ Vận dụdụngdinhj lý hàm cosin xác định p2.
+ Xác định góc .
Lời giải:
- Hệ viên đạn ngay trước và sau khi nổ là hệ kín do:
+ Nội lực lớn hơn rất nhiều so với ngoại lực.
+ Thời gian xảy ra tương tác rất ngắn.
- Động lượng của hệ trước va chạm:
p = m.v = 2.250 = 500 (kgms-1)
- Động lượng của mảnh thứ nhất:
p1 = m.v1 = 1.250 = 250 (kgms-1) 
- Áp dụng ĐLBT động lượng ta có:
Áp dụng định lý hàm số cosin cho tam giác OAB ta có:
b= 300.
Nhận xét:
HS khó khăn khi biểu diễn các vectơ động lượng và xác định vectơ tổng.
Không xác định được phương chuyển động của mảnh thứ 2.
Bài tập 4: 
Trên hồ có một con thuyền, mũi thuyền hướng thẳng góc với bờ. Lúc đầu thuyền nằm yên, khoảng cách từ mũi thuyền đến bờ là 0,75m. Một người bắt đầu đi từ mũi thuyền đến đuôi thuyền. Hỏi mũi thuyền có cập bờ được không, nếu chiều dài của thuyền là 2m. Khối lượng của thuyền là 140kg, của người là 60kg. Bỏ qua ma sát giữa thuyền và nước.
Tóm tắt:
l = 2m M = 140kg
m = 60kg l’ = ?
Yêu cầu:
+ Mô tả chuyển động của người, thuyền so với bờ.
+ Chọn HQC chung là bờ cho 2 vật chuyển động.
+ Áp dụng CT cộng vận tốc, ĐLBT động lượng.
Nhận xét:
+ HS quên cách chọn gốc quy chiếu là mặt đất đứng yên.
+ Không xác định được vận tốc của vật chuyển động so với gốc quy chiếu bằng cách áp dụng công thức vận tốc.
Lời giải:
Dễ thấy, để BTĐL của hệ và thuyền ban đầu đứng yên thì khi người chuyển động thuyền sẽ chuyển động ngược lại.
- Xét khi người đi trên thuyền theo hướng ra xa bờ.
+ Gọi vận tốc của người so với thuyền là: 
+ Vận tốc của thuyền so với bờ là: 
+ Vận tốc của người so với bờ là: 
+ Áp dụng công thức vận tốc ta có:
 (*)
+ Chọn chiều dương trùng với . Do người và thuyền luôn chuyển động ngược chiều nhau nên:
(*) v’ = v – V v = v’ + V
+ Khi người đi hết chiều dài của thuyền với vận tốc v thì: l = v.t 
Trong thời gian này, thuyền đi được quãng đường so với bờ:
 (1)
- Áp dụng ĐLBT động lượng ta có:
-Thay (2) vào (1) ta có:
 < 0,75m
Mũi thuyền không cập bờ được.
Bài tập 5: Bài toán chuyển động của tên lửa
Một tên lửa có khối lượng tổng cộng M = 10T đang bay với vật tốc 200m/s đối với Trái đất thì phụt ra phía sau (tức thời) khối lượng khí m = 2T với tốc độ 500m/s đối với tên lửa. Tính vận tốc của tên lửa sau khi khí phụt ra với giả thiết toàn bộ khối lượng khí được phụt ra cùng một lúc.
Tóm tắt:
M = 10T V = 200m/s
m = 2T v = 500m/s
V’ = ?
Yêu cầu:
+ Nêu được nguyên tắc chuyển động của tên lửa.
+ Chọn gốc quy chiếu và chiều dương.
+ Biết vận dụng công thức vận tốc để xác định vận tốc của tên lửa ngay sau khi phụt khí.
Lời giải:
- Hệ tên lửa và khí phụt ra ngay trước và ngay sau khi phụt là hệ kín.
- Gọi M, M’ là khối lượng tên lửa ngay trước và ngay sau khi phụt khí.
- Gọi là vận tốc của tên lửa so với Trái đất ngay trước và ngay sau khi phụt khí có khối lượng m.
 là vận tốc lượng khí phụt ra so với tên lửa.
Vận tốc của lượng khí phụt ra so với Trái đất là:
- Áp dụng ĐLBT động lượng ta có:
 (*)
Chọn chiều dương theo chiều chuyển động của tên lửa.
Vì khí phụt ra phía sau nên:
 =>(*): MV = (M – m).V’ + m(V – v)
(m/s) 
Bài toán 6:
Một viên đạn được bắn từ mặt đất với vận tốc v0 = 20m/s theo hướng lệch với phương ngang góc α = 300. Lên tới đỉnh cao nhất nó nổ thành mảnh có khối lượng bằng nhau. Mảnh I rơi thẳng đứng với vận tốc v1 = 20m/s.
Tìm hướng và độ lớn vận tốc của mảnh II.
Mảnh II lên tới độ cao cực đại cách mặt đất bao nhiêu?
O
y
O’
β
hMax
α
x
yMax
y’Max
Tóm tắt:
v0 = 20m/s v1 = 20m/s
α = 300 m1 = m2 = 
a) b) hMax = ?
Lời giải:
Chọn hệ trục toạ độ Oxy: 	Ox nằm ngang
Oy thẳng đứng
Gốc O là vị trí ném lựu đạn.
Tại thời điểm ban đầu t0 = 0, vận tốc lựu đạn theo mỗi phương:
Tại thời điểm t xét chuyển động của lựu đạn theo 2 phương:
Ox
Oy
Vận tốc
 (1)
Toạ độ
 (2)
Chuyển động
đều
biến đổi đều
a) Khi lựu đạn lên tới độ cao cực đại
(s)
(2) (m)
* Xét tại vị trí cao nhất ngay sau khi nổ:
- Hệ viên đạn ngay trước và ngay sau khi nổ là hệ kín vì: Nội lực lớn hơn rất nhiều ngoại lực và thời gian xảy ra tương tác ngắn.
- Áp dụng ĐLBT động lượng ta có: 
Do mảnh I rơi thẳng đứng, lựu đạn tại O’ có vận tốc trùng phương ngang
(m/s)
Gọi β là góc lệch của với phương ngang, ta có:
Vậy mảnh II bay lên với vận tốc 40m/s tạo với phương ngang một góc β = 300.
b) Mảnh II lại tham gia chuyển động ném xiên dưới góc ném β = 300. Tương tự phần (a), ta có:
Sau thời gian t’ lựu đạn nổ, ta có:
Khi mảnh II lên tới độ cao cực đại: (s)
Độ cao cực đại của mảnh II lên tới kể từ vị trí lựu đạn nổ:
(m)
Vậy độ cao cực đại của mảnh II lên tới là:
(m)
Nhận xét: HS thường gặp khó khăn khi:
+ Xét chuyển động của một vật bị ném xiên, xác định độ cao cực đại.
+ Xác định phương bảo toàn động lượng và biểu diễn vectơ động lượng của các mảnh đạn ngay trước và ngay sau khi nổ.
KẾT LUẬN
Việc giao bài tập về nhà cho HS nghiên cứu giúp HS có thái độ tích cực, tự giác tìm lời giải cho mỗi bài toán.
Đến tiết bài tập, giáo viên tổ chức hướng dẫn HS trình bày bài giải chi tiết, nhiều em có thể cùng tham gia giải một bài tập, kích thích khả năng độc lập, sáng tạo của mỗi HS.
Giúp các em có được cái nhìn tổng quan về phương pháp giải một bài tập Vật lý nói chung và bài tập liên quan đến ĐLBT động lượng nói riêng. Tạo hứng thú say mê học tập trong bộ môn Vật lý. Từ đó phát huy được khả năng tự giác, tích cực của HS, giúp các em tự tin vào bản thân khi gặp bài toán mang tính tổng quát.
 Người viết
 Nguyễn Thị Liên

Tài liệu đính kèm:

  • docsang_kien_kinh_nghiem_ung_dung_dinh_luat_bao_toan_dong_luong.doc