Sáng kiến kinh nghiệm Một số biện pháp nhằm rèn kỹ năng giải toán chia hết cho học sinh lớp 6

Sáng kiến kinh nghiệm Một số biện pháp nhằm rèn kỹ năng giải toán chia hết cho học sinh lớp 6

Để làm dạng toán này ta áp dụng phương pháp chứng minh quy nạp. Tuy nhiên, khi dạy lớp 6 ta không cần phải nói khó hiểu mà chỉ dạy cho các em xét các trường hợp bẳng mệnh đề: “ Nếu thì ”. Mặt khác nếu ngay lớp 6 các em được làm dạng bài tập này thì rất thuận tiện để các em làm dạng toán chia hết ở các lớp trên. Nếu không, các em sẽ cảm thấy kiến thức chia hết rất lạ, rất xa vời khi lên lớp 7,8,9 gặp bài toán mà sử dụng kiến thức đáng lí ra phải được chứng minh ở lớp 6.

doc 21 trang Người đăng hungphat.hp Lượt xem 5385Lượt tải 4 Download
Bạn đang xem 20 trang mẫu của tài liệu "Sáng kiến kinh nghiệm Một số biện pháp nhằm rèn kỹ năng giải toán chia hết cho học sinh lớp 6", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
 biết giải thì sự lập luận chưa chặt chẽ. Nếu ở lớp 6 các em không làm quen với lập luận chặt chẽ thì lên lớp trên các em cảm thấy kiến thức chỉ là áp đặt,từ đó không tạo ra sự tò mò, hứng thú đối với môn học. Vì vậy chúng ta cần có giải pháp lâu dài rèn các em biết giải toán từ những phép biến đổi cơ bản. Có như thế toán học mới thực sự lôi cuốn các em vào dòng say mê chiếm lĩnh tri thức, hơn nữa toán lại là môn chủ đạo. Chính vì lẻ đó tôi đã nghiên cứu đề tài “ Một số biện pháp nhằm rèn kỹ năng giải toán chia hết cho học sinh lớp 6”
II/ ĐỐI TƯỢNG NGHIÊN CỨU
“ Một số biện pháp nhằm rèn kỹ năng giải toán chia hết cho học sinh lớp 6”
 III/ PHẠM VI NGHIÊN CỨU:
Không gian: Một số biện pháp nhằm rèn kỹ năng giải toán chia hết cho học sinh lớp 6 cụ thể dành cho đối tượng là lớp 6A2, 6A4
Thời gian: chia làm 3 giai đoạn
	Giai đoạn 1: Nghiên cứu bài làm cũng như kết quả qua khảo sát chất lượng đầu năm.
	Giai đoạn 2: Đưa ra biện pháp rèn kỹ năng giải toán chia hết qua kết quả khảo sát giữa học kì 1. 
	Giai đoạn 3: Áp dụng đề tài ngay sau khi học và chuẩn bị thi học kì 1 cho đến nay.
 IV/ PHƯƠNG PHÁP NGHIÊN CỨU:
 - Đọc tài liệu SGK, tài liệu mạng 
 - Đàm thoại trực tiếp
 - Nghiên cứu và tổng kết kinh nghiệm giáo dục
 - Nghiên cứu sản phẩm hoạt động sư phạm
B.NỘI DUNG
I/ CƠ SỞ LÝ LUẬN
 Chúng ta đang dạy học theo sự đổi mới là dạy học theo chuẩn kiến thức kỹ năng , vì thế những gì gọi là chuẩn – là cơ bản nhất cần phải nắm vững. Rèn kỹ năng giải toán chia hết cũng là chuẩn mà học sinh cần phải nắm. Hệ thống bài tập thể hiện dạng toán chia hết có vai trò quan trọng là nó giúp cho học sinh phát triển khả năng tư duy, khả năng vân dụng kiến thức một cách linh hoạt vào giải toán, trình bày lời giải chính xác và logic. Đó cũng là những kỹ năng cần thiết của học sinh khi còn ngôi trên ghế nhà trường. Có như thế mới phù hợp với sự cải tiến dạy học là phát huy hết tính tích cực, tư duy sáng tạo của học sinh trong trường học.
II/ CƠ SỞ THỰC TIỂN 
Trong quá trình giảng dạy tôi thấy đa phần học sinh chưa có kỹ năng giải toán “chia hết” vì các em chưa biết bài toán đó cần áp dụng phương pháp nào để giải cho kết quả đúng nhất, nhanh nhất và đơn giản nhất. Vì vậy để nâng cao kỹ năng giải toán “chia hết” thì các em phải nắm được các dạng toán, các phương pháp gỉải, các kiến thức cơ bản được cụ thể hoá trong từng bài, từng chương. Có thể nói rằng dạng toán “chia hết” luôn là dạng toán khó đối với học sinh và không ít học sinh cảm thấy sợ khi học dạng toán này.
	Là một giáo viên dạy toán tôi mong các em chinh phục được nó và không chút ngần ngại khi gặp dạng toán này. Nhằm giúp các em phát triển tư duy suy luận và óc phán đoán, kỹ năng trình bày linh hoạt. Hệ thống bài tập tôi đưa ra từ dễ đến khó, bên cạnh đó còn có những bài tập nâng cao dành cho học sinh giỏi được lồng vào các tiết luyện tập. Lượng bài tập cũng tương đối nhiều nên các em có thể tự học, tự chiếm lĩnh tri thức thông qua hệ thống bài tập áp dụng này, điều đó giúp các em hứng thú học tập hơn rất nhiều.
Hiện tại, học sinh lớp 6A2, 6A4 tôi đang dạy năm nay còn rất ngở ngàn đối với dạng toán chia hết, các em cảm thấy lạ và rất ngại làm dạng toán này vì nghĩ nó rất khó. Vì thế, thiết yếu phải rèn kỹ năng giải toán chia hết ở lớp 6 để làm hành trang kiến thức vững chắc cho các em gặp lại dạng toán này ở các lớp trên. 
III/ NỘI DUNG VẤN ĐỀ
	1.Vấn đề đặt ra:
Hệ thống hóa lý thuyết chia hết và bài tập vận dụng tương ứng, từ dạng cơ bản nhất đến tương đối và khó hơn. Trong quá trình giải nhiều dạng bài tập là đã hình thành khắc sâu cho các em kỹ năng giải các dạng toán chia hết.Giáo viên nêu ra các dấu hiệu chia hết hay là các phương pháp chứng minh chia hết trong SGK ,ngoài ra bổ sung thêm một số phương pháp cần thiết nhất để vận dụng vào nhiều dạng bài tập khác nhau.
 2. Giải quyết vấn đề
 2.1 LÝ THUẾT:
 a) Tính chất chia hết của một tổng, một hiệu, môt tích
	-Nếu và thì a + b , a – b , 
	- Nếu thì 
	- Nếu và thì đặc biệt thì 
 b) SKG toán 6 giới thiệu dấu hiệu chia hết cho 2, 3, 5, 9 ở đây giáo viên cần bổ sung thêm dấu hiệu chia hết cho 4, 6, 8, 25 và 125.
 Mục đích đưa thêm các dấu hiệu là để khi vận dụng vào bài tập học sinh không bị lúng túng ngay cả khi lên các lớp trên (7, 8, 9)
Chia hết cho
Dấu hiệu
2
Số có chữ số tận cùng là chữ số chẵn
3
Số có tổng các chữ số chia hết cho 3
4(hoặc 25)
Số chia hết cho 4(hoặc 25) khi hai chữ số tận cùng lập thành một số chia hết cho 4(hoặc 25)
5
Số có chữ số tận cùng là 0 hoặc 5
6
Là số đồng thời chia hết cho 2 và 3
8(hoặc 125)
Số chia hết cho 8(hoặc 125) khi ba chữ số tận cùng lập thành một số chia hết cho 8(hoặc 125)
9
Số có tổng các chữ số chia hết cho 9
10
Số có chữ số tận cùng là 0
11
Số chia hết cho 11 khi hiệu giữa tổng các chữ số của nó đứng ở vị trí lẻ và tổng các chữ số đứng ở vị trí chẵn(kể từ trái sang phải) chia hết cho 11
 c) Nguyên tắc Đirichlê:
 Ngay từ khi lớp 6 giáo viên cũng có thể giới thiệu sơ lược về nguyên tắc Đirichlê có nội dung được phát biểu dưới dạng một bài toán:
“Nếu nhốt n con thỏ vào m lồng (m> n) thì ít nhất có một lồng nhốt không ít hơn hai con thỏ”.
 d) Phương pháp chứng minh quy nạp:	
Muốn khẳng định An đúng với mọi n= 1,2,3, ta chứng minh như sau:
khẳng định A1 đúng
Giả sử Ak đúng với mọi k>=1 ta cũng suy ra khẳng định Ak+1 đúng.
Kết luận An đúng với mọi n=1,2,3
Thực ra, khi dạy bài tập áp dụng phương pháp này giáo viên không cần phải nói cầu kỳ, trừu tượng khó hiểu, mà chỉ cần đi xét từng trường hợp cho học sinh dễ hiểu chứ không nhất thiết phải dùng từ ta áp dụng phương pháp chứng minh quy nạp.
 e) Phương pháp chứng minh phản chứng:
Muốn chứng minh khẳng định P đúng có 3 bước:
Giả sử P sai
Nhờ tính chất đã biết từ giả sử sai suy ra điều vô lí
Vậy điều giả sử là sai , chứng tỏ P đúng.
 f) Để chứng minh a chia hết cho b ta biểu diễn b = m.n
	Nếu (m,n) = 1 thì tìm cách chứng minh a chia hết cho m, a chia hết cho n khi đó a chia hết cho m.n hay a chia hết cho b
	Nếu (m,n) khác 1 thì ta biểu diễn a = a1.a2 rồi chứng minh a1 chia hết cho m, a2 chia hết cho n hoặc ngược lại. khi đó a1.a2 chia hết cho m.n hay a chia hết cho b
 2.2CÁC DẠNG TOÁN:
Trong phần này tôi sẽ đưa ra các dạng toán từ cơ bản nhất đến mở rộng hơn, Có như thế chúng ta mới có thể rèn và hình thàng kỹ năng giải toán chia hết cho các em một cách có nền tảng.
a) Dạng 1: Dạng toán điền vào * để được số chia hết cho một số.
Bài toán 1: Điền vào * để số 35* 
chia hết cho 2
chia hết cho 5
chia hết cho cả 2 và 5
Đây là dạng toán hết sức cơ bản. khi gặp dạng toán này thì đương nhiên giáo viên phải cho học sinh tái hiện lại dấu hiệu chia hết cho 2, cho 5 và số như thế nào chia hết cho cả 2 và 5.
	a) ó 
	b) 
	c) và 5 
Bài toán 2: Điền vào * để
	a) 
	b) 
Tương tự như bài toán 1 học sinh có thể vận dụng trực tiếp dấu hiệu chia hết cho 3 và cho 9 để làm 
	a) 
	b) 
b) Dạng 2: Tìm các chữ số chưa biết của một số:
Bài toán 3: Tìm chữ số a, b sao cho chia hết cho đồng thời 2,3,5,9
Lập luận: Đầu tiên phải đề cập đến chia hết cho 2 và 5 vì nó liên quan đến chữ số tận cùng
	 Sau đó, khi đã có chữ số tận cùng, ta xét tổng các chữ số vì nó liên quan đến chia hết cho 9. Ở đây ta không cần quan tâm đến chia hết cho 3, vì số chia hết cho 9 thì đương nhiên chia hết cho 3.
(Vì a là chữ số hàng nghìn nên số 0 không có nghĩa)
Vậy a= 9; b= 0 thì chia hết cho đồng thời 2,3,5,9
Bài toán 4: Tìm chữ số a, b sao cho và a – b = 4
Lập luận	
Mà điều kiện a – b = 4 nên ta loại a + b = 3. Từ a –b = 4 và a + b = 12
ta tìm được a = 8; b = 4
Bài toán 5: cho số 
	a) Tìm a để 
	b) Trong các số vừa tìm được của a có giá trị nào làm cho số không ?
	Hướng dẫn
	a) Tính tổng các chữ số của ta được 
	 do đó 
	b) với a = 0 thì số 76023 có 
	(7 + 0 + 3) – (6 + 2 ) = 2 11
	Tương tự với a = 9 ta có 
	(7 + 9 + 3) – ( 6 + 2) = 11 11
Vậy a= 9 thì 
Bài toán 6: Tìm a, b sao cho chia hết 3 và 4
	Hướng dẫn 
	Lập luận chia hết cho 4 trước ta được a = 2 và a = 6
	+ Thay a = 2 vào ta được . Xét tiếp dấu hiệu chia hết cho 3 bằng cách tính tổng các chữ số.
	Lập luận tương tự với a = 6 ta được 
Bài toán 7: Thay các chữ số x, y bằng chữ số thích hợp để cho 
	a) Số chia hết cho 5, cho 25, cho 125
	b) Số chia hết cho 2, cho 4, cho 8
	Hướng dẫn
	b) vì chữ số tận cùng là số chẵn
	 Hoặc 
Bài toán 8:Tìm các chữ số a và b sao cho chia hết cho 5 và 8
"Để tìm được a và b ta phải thấy được hai dấu hiệu cơ bản đó là số đó chia hết cho 5 và 8
Vì chia hết cho 5 nên b=0 hoặc b=5 và chia hết cho 8 nên suy ra b=0
Mặt khác , chia hết cho 8 nên chia hết cho 4 khi chia hết cho 4 suy ra a {0;2;4;6;8}. Ta có chia hết cho 8 khi chia hết cho 8 nên a=2 hoặc a=6. Vậy nếu a=2 thì b=0 và nếu a=6 thì b=0 nên số cần tìm là 1920 và 1960
Bái toán 9: Chữ số a là bao nhiêu để chia hết cho cả 3 và 8
vì 8 8 100a + 96 8 suy ra 100a8 
vậy a là số chẵna Î{ 2, 4, 6, 8} (1).
vì 3 (a + a + a + a + a + 9 + 6 ) 3 5a + 15 3 
mà 153 5a3
mà (5, 3) = 1	
Suy ra a 3 vậy a Î{ 3, 6 ,9} (2). 
Từ (1) và (2 ) suy ra a = 6
KL: Vậy số phải tìm là 6666696.
Bài toán 10: Tìm chữ số a để 11
HD: tổng các chữ số hàng lẻ là 2 + a .Tổng các chữ số hàng chữ là 2a.
* Nếu 2a ³ a + 2 a ³ 2 thì 2a – (a + 2) = a -2 £ 9 – 2 = 7
mà (a - 2) 11 nên a - 2 = 0 a = 2 
* Nếu 2a £ a + 2 a < 2 thì (a + 2) - 2a = 2 - a mà 2 hoặc là 1 không chia hết cho 11.Vậy a=2
Bài toán 11:Tìm x để chia hết cho 3 nhưng không chia hết cho 9
	Hướng dẫn
	Vì nên 
Từ đó ta được x = 24; x = 30
c) Dạng 3: Chứng minh chia hết đối với biểu thức số
Bài toán 12: Tổng (hiệu) sau có chia hết cho 9 không?
1251+5316
5436-1234
1.2.3.4.5.6 + 27
Hướng dẫn: dựa vào dấu hiệu chia hết cho 9 để lập luận
Bài toán 13: Cho M = 7.9.11.13 + 2.3.4.7
	 N = 16 354 + 675 41
Chứng tỏ rằng: M chia hết cho 3
 N chia hết cho 5
Ta có: 7.9.11.13 3( vì )
 2.3.4.7 3 (vì 3 3)
7.9.11.13 + 2.3.4.7 3
Vậy M chia hết cho 3
Ta có giá trị của tổng 16 354 + 67 541 có chữ sô tận cùng là 5 nên chia hết cho 5
Vậy N chia hết cho 5
Bài toán 14: Cho A= 2.4.6.8.10 + 40
Chứng tỏ rằng: a) A chia hết cho 8
 b) A chia hết cho 5
	Hướng dẫn
	a) Dựa vào tính chất chia hết của một tổng ta lập luận
2.4.6.8.10 ( vì tích có chứa thừa số 8)
Vậy A chia hết cho 8
b) Tương tự ( vì 10 chia hết cho 5)
Bài toán 15: Chứng minh rằng và 5 
Hướng dẫn: Theo đề bài ta suy ra chữ số tận cùng (CSTC) của từng lũy thừa trong bài 
995 – 984 + 973 – 962 =9 - 6 +3 – 6 = 0 
Biểu thức đã cho có giá trị chứa CSTC là 0 nên chia hết cho 2 và 5
Vậy và 5
d) Dạng 4: Chứng minh tổng, tích các số liên tự nhiên liên tiếp chia hết cho một số
Để làm dạng toán này ta áp dụng phương pháp chứng minh quy nạp. Tuy nhiên, khi dạy lớp 6 ta không cần phải nói khó hiểu mà chỉ dạy cho các em xét các trường hợp bẳng mệnh đề: “ Nếuthì ”. Mặt khác nếu ngay lớp 6 các em được làm dạng bài tập này thì rất thuận tiện để các em làm dạng toán chia hết ở các lớp trên. Nếu không, các em sẽ cảm thấy kiến thức chia hết rất lạ, rất xa vời khi lên lớp 7,8,9 gặp bài toán mà sử dụng kiến thức đáng lí ra phải được chứng minh ở lớp 6.
Bài toán 16: Chứng tỏ rằng tích hai số tự nhiên liên tiếp chia hết cho 2.
Gv cần gợi mở rằng: ở đây ta chứng minh bài toán trên đúng với mọi cặp giá trị liên tiếp trong N, chứ không phải chỉ cần chỉ ra một hoặc hai cặp giá trị là đủ mà phải đi chứng minh đúng dưới dạng tổng quát.
Gọi hai số tự nhiên liên tiếp là: a, a+1
Nếu a 2 thì bài toán đã được giải
Nếu a 2 thì a chia 2 dư 1
Ta có a= 2k + 1.
 a + 1 = 2k + 1 + 1 
 = 2k + 2 2
Vậy trong hai số tự nhiên liên tiếp bao giờ cũng có một số chia hết cho 2.Cho nên tích hai số tự nhiên liên tiếp chia hết cho 2
Bài toán 17: Chứng minh tích ba số tự nhiên liên tiếp chia hết cho 3.
Gọi ba số tự nhiên liên tiếp là a, a+1, a+2 
Nếu a 3 thì bài toán đã được giải
Nếu a = 3k+1(nghĩa là a chia 3 dư 1) thì lúc đó 
Ta có a+2= 3k+1+2 = 3k+3 3
Nếu a= 3k+2 (nghĩa là a chia 3 dư 2) thì lúc đó
 Ta có a+1= 3k+2+1
 = 3k+3 3
Vậy trong ba số tự nhiên liên tiếp bao giờ cũng có một số chia hết cho 3.
Cho nên tích ba số tự nhiên liên tiếp chia hết cho 3
Bài toán 18: Chứng minh rằng tổng ba số tự nhiên liên tiếp là một số chia hết cho 3 nhưng tổng của bốn số tự nhiên liên tiếp thì không chia hết cho 4
Gọi ba số tự nhiên liên tiếp n, n+1, n+2
Tống của chúng là: n + n+1 + n+2 = 3n +3 3
Vậy tổng ba số tự nhiên liên tiếp là một số chia hết cho 3
Tương tự tổng của bốn số tự nhiên liên tiếp là: 4n + 6 4(vì 64)
 Vậy tổng của bốn số tự nhiên liên tiếp không chia hết cho 4 
Bài toán 19: Chứng minh rằng tích hai số chẵn liên tiếp chia hết cho 8
Gọi hai số chẵn liên tiếp là 2n, 2n+2 (nN)
Tích 2n.(2n+2) = 2.n.2.(n+1)
 = 4.n.(n+1)
 Ta có n.(n+1) là tích hai số tự nhiên liên tiếp nên chia hết cho 2( theo bài toán 16)
Vì thế 4.n.(n+1) 8
Vậy tích hai số chẵn liên tiếp chia hết cho 8
Bài toán 20: Chứng minh rằng tích ba số chẵn liên tiếp chia hết cho 48
Gọi ba số chẵn liên tiếp là 2n, 2n +2, 2n +4 ((nN)
Tích 2n.(2n+2).(2n+4) = 2.n.2(n+1).2(n+2)
 = 8.n.(n+1).(n+2)
Ta có n.(n+1) là tích hai số tự nhiên liên tiếp nên chia hết cho 2( theo bài toán 16)
Ta có n.(n+1).(n+2) là tích ba số tự nhiên liên tiếp nên chia hết cho 3(theo bài toán 17)
Mà (2,3) = 1 nên n.(n+1).(n+2) chia hết cho 6
Vì thế 8.n.(n+1).(n+2) 48 
Vậy tích ba số chẵn liên tiếp chia hết cho 48
e) Dạng 5: Dạng toán vận dụng nguyên lí Đirichlê
Đối với dạng toán vận dụng nguyên lí Đirichlê giáo viên không đi sâu mà chỉ giới thiêu cho học sinh biết và bài tập áp dụng dạng suy luận dễ hiểu.
Bài toán 21: Cho ba số lẻ. chứng minh rằng tồn tại hai số có tổng hoặc hiệu chia hết cho 8
Một số lẻ chia cho 8 thì số dư chỉ có thể là một trong bốn số sau: 1;3;5;7. ta chia 4 số dư này ( 4 con thỏ) thành 2 nhóm (2 lồng)
	Nhóm 1: dư 1 hoặc dư 7
	Nhóm 2: dư 3 hoặc dư 5
Có 3 số lẻ (3 thỏ) mà chỉ có hai nhóm số dư nên tồn tại hai số thuộc cùng một nhóm
Nếu 2 số dư bằng nhau thì hiệu của chúng chia hết cho 8
Nếu 2 số dư khác nhau thì tổng của chúng chi hết cho 8
Bài tập tương tự:
Cho ba số nguyên tố lớn hơn 3.Chứng minh rằng tồn tại hai số có tổng hoặc hiệu chia hết cho 12
Hướng dẫn: Một số nguyên tố lớn hơn 3 chia cho 12 thì số dư chỉ có thể là 1 trong 4 số 1; 5; 7; 11.
Chia làm hai nhóm:
	Nhóm 1: dư 1 hoặc dư 11
	Nhóm 2: dư 5 hoặc dư 7
Giải tiếp như bài toán 18
f) Dạng 6: Tìm điều kiện để một biểu thức chia hết cho một số, chia hết cho một biểu thức 
Bài toán 22: Chứng minh rằng Nếu a m, b m, a+b+c m thì c m.
Ta sử dụng phương pháp chứng minh phản chứng
Giả sử c m
Ta có nên a + b + c m (tính chất 2 sgk toán 6 tr 35).
 Điều này trái với đề bài 
Vậy điều giả sử sai.Suy ra 
Đối với bài này, khi dạy giáo viên không nhất thiết khắc sâu phần chứng minh. Yêu cầu học sinh chỉ cần vận dụng kiến thức đã được chứng minh vào bài tập cụ thể nào đó là được.
Bài toán 23:Tìn n N để:
n+4 n
3n + 7 n
27- 5n n
Giải:
a) 	 4 n ( theo bài toán 22)
Vậy n 
b) 	 7 n
Vậy n 
c) 	 27 n
Vậy n nhưng 5n < 27 hay n<6 
Vậy n 
3. Kết quả:
Kết quả so sánh về các số liệu với thời điểm bắt đầu nghiên cứu cho đến nay 
Giai đoạn
TS
HS
Tổng số SH đạt từ TB trở lên
Tổng số học sinh dưới trung bình
Chi chú
TS
Tỉ lệ %
TS
Tỉ lệ %
Giai đoạn 1
80
53
66.25
27
33.75
Giai đoạn 2
80
65
81.25
15
18.75
Giai đoạn 3
77
69
89.61
8
10.39
3 hs bỏ học
	Kết quả trên cho thấy việc vận dụng phương pháp trên vào giảng dạy toán giúp học sinh có kết quả cao trong học tập.
*HIỆU QUẢ ĐỔI MỚI.
Sau khi thử nghiệm tôi thấy học sinh có kỹ năng giải các dạng toán chia hết khá tốt và áp dụng linh hoạt các phương pháp đã học như phương pháp quy nạp toán học, tính chất chia hết của một tổng, hiệu, tíchđể giải quyết triệt để các dạng toán liên quan tới dạng toán “chia hết”
Thông qua các phương pháp học sinh đã xác định được đúng hướng giải một bài toán nên kỹ năng giải toán “chia hết” nói chung và khả năng tự học ở nhà của học sinh tăng lên rõ rệt. Kết quả đáng tin cậy là điểm kiểm tra một tiết và điểm thi HKI vừa qua đồng thời kỹ năng giải toán chia hết đạt 81% trên trung bình, cao hơn so với trước khi thử nghiệm. Hơn nữa, giữa HKII chất lượng đạt được hơn 89% trên trung bình, đã tạo cho học sinh sự hứng thú và say mê với bộ môn Toán.
C. KẾT LUẬN
I/. BÀI HỌC KINH NGHIỆM:
 1/ Đối với giáo viên:
-Để rèn kỹ năng giải toán chia hết cho học sinh đạt hiệu qua cao ta cần lưu ý một số nội dung như sau:
-Thường xuyên kiểm tra miệng và phần bài tập về nhà trong những giờ học nhằm giúp các em nắm vững các kiến thức cơ bản của từng bài học.
- Lồng ghép nhiều dạng bài tập chia hết vào các tiết luyện tập , tự chọn.
-Cần xây dựng một hệ thống bài tập đặc trưng nêu được những tính chất cơ bản của nội dung mà ta cần rèn luyện. Bên cạnh đó đưa ra những bài tập tương tự như những bài tập mà các em đã làm được. 
-Việc rèn luyện kỹ năng tính toán cho học sinh phải thực hiện thường xuyên, lâu dài xuyên suốt quá trình giảng dạy trong cả năm học.
- Qua kết quả trên tôi thấy việc rèn luyện kỹ năng giải toán chia hết là hết sức cần thiết , phương pháp cho từng dạng toán đem lại hiệu quả cao trong việc nâng cao kỹ năng giải toán chia hết nói chung và giải Toán nói riêng.
 2/ Đối với học sinh:
Để làm tốt được dạng toán chia hết này học sinh cần phải nắm chắc các kiến thức cơ bản như: tính chất chia hết của một tổng, một hiệu, một tích.Bên cạnh đó còn hiểu vả nắm được các phương pháp chứng minh quy nạp toán học, phương pháp phản chứng,  và một số các phương pháp khác nữa. Tuy nhiên trong quá trình làm học sinh cần vận dụng linh hoạt nội dung kiến thức trên vào từng bài cho phù hợp, có như vậy mới đạt được kết quả tốt. Trong quá trình làm dạng toán này tôi đặc biệt chú ý đến nội dung các bài toán có sự sắp xếp theo trình tự từ dễ đến khó, các dạng rất đa dạng và phong phú. Nhằm cung cấp cho học sinh lượng kiến thức phù hợp với khả năng nhận thức và có sự phát triển khả năng tư duy lôgíc.
Đây là một sáng kiến thuộc dạng dạy và học nên hy vọng không chỉ người dạy quan tâm tới việc nâng cao kỹ năng giải toán chia hết cho học sinh mà cả học sinh cũng cần tham khảo để tự mình nâng cao kỹ năng giải toán chia hết cho riêng mình và áp dụng nó để giải các dạng bài tập có liên quan.
Người dạy và học muốn có hiệu quả cao trong việc áp dụng sáng kiến để nâng cao kỹ năng giải toán chia hết thì người dạy và học cần nhiệt tình nắm rõ các bước sau. Đối với người dạy cần vận dụng trình tự sơ đồ như sau:
Người dạy cần:
Nắm rõ các kiến thức đã học liên quan về toán chia hết
Áp dụng kiến thức đã học một cách linh hoạt để giải toán hoạt
Kiểm tra, đánh giá kết quả thực nghiệm
 Đối với học sinh cần vận dụng theo trình tự sơ đồ hoá sau:
Học sinh cần:
Nắm vững các kiến thức đã học cũng như phương pháp giải cho từng dạng toán 
Có tính sáng tạo , tự giác, tích cực
Biết vận dụng vào thực tế
II/. HƯỚNG PHỔ BIẾN ÁP DỤNG ĐỀ TÀI.
- Qua kết quả nghiên cứu trên tôi nhận thấy” Một số biện pháp nhằm rèn kỹ năng giải toán chia hết cho học sinh lớp 6 “ có thể áp dụng được cho học sinh cả khối 6 của trường cũng như trong phạm vi cả huyện. Bởi vấn đề tôi nghiên cứu và thực hiện không quá khó giáo viên nào cũng có thể thực hiện được trong quá trình soạn giảng và lên lớp. 
	- Để trang bị cho học sinh một kiến thức cơ bản vững chắc và quan trọng là các em tự tin không còn phải sợ môn toán, đây chính là tiền đề để các em học tốt môn toán ở các lớp trên.
III/. Hướng nghiên cứu tiếp của đề tài:
	Nếu có điều kiện tôi sẽ nghiên cứu tiếp đề tài này ở các năm sau nhằm ngày càng hoàn thiện hơn về phương pháp giảng dạy của bản thân và nhằm góp phần nâng cao chất lượng bộ môn toán nói chung.
 Trên đây là phần trình bày kinh nghiệm giảng dạy về “Một số biện pháp nhằm rèn kỹ năng giải toán chia hết cho học sinh lớp 6” mà tôi đã áp dụng hướng dẫn học sinh trong năm học này mặc dù có mang lại kết quả khả quan. Tuy nhiên chắc chắn còn những giải pháp khác để học sinh học tốt hơn mà bản thân cần phải học hỏi . Nhưng do thời gian và khả năng còn nhiều hạn chế nên rất mong sự đóng góp ý kiến của quý đồng nghiệp để đề tài đạt hiệu quả hơn trong tương lai.
	Bàu Đồn, ngày 18 tháng 2 năm 2012
 Người 

Tài liệu đính kèm:

  • docngoc2012.doc